Introduction

It is a professional 64 bit Dream machine with supersonic speed! It is beautiful. It is about the ultimate user friendliness. It is about a lifestyle. It is a class apart. You guessed it - I am parroting Apple’s marketing.

For some reason, the performance of Apple’s gorgeous machines has been wrapped in a shroud of mystery. Yes, you could find a benchmark here and there, with one benchmark showing that the PowerMac is just a mediocre PC while another shows it off as a supercomputer, the unchallenged king of the personal computer world.

This article is written solely from the frustration that I could not get a clear picture on what the G5 and Mac OS X are capable of. So, be warned; this is not an all-round review. It is definitely the worst buyer’s guide that you can imagine. This article cares about speed, performance, and nothing else! No comments on how well designed the internals are, no elaborate discussions about user friendliness, out-of-the-box experience and other subjective subjects. But we think that you should have a decent insight to where the G5/Mac OS X combination positions itself when compared to the Intel & AMD world at the end of this article.

If you like a less performance-obsessed article about Apple, OS X and the G5, you should definitely give Anand’s articles in the Mac section on AnandTech a read...

In this article, you will find a pedal to the metal comparison of the latest Xeon DP 3.6 GHz (Irwindale), Opteron 250, Dual G5 2.5 GHz and Dual G5 2.7 GHz.

Scope and focus

Apple’s PowerMac is an alternative to the x86 PC, but we didn’t bother testing it as a gaming machine. Firstly, you have to pay a big premium to get a fast video card – as a standard, you get the ATI Radeon 9650 - even on the high-end PowerMacs. Secondly, there are fewer games available on this platform than on the x86 PC. Thirdly, hardcore gamers are not the ones buying Apples, but rather, creative professionals.

So, we focus on workstation and server applications, especially the open source ones ( MySQL, Apache) as Apple is touting heavily on how important their move to an “open source foundation” is.

The 64 bit Apple Machines were running OS X Server 10.3 (Panther) and OS X Server 10.4.1 (Tiger), while our x86 machines were also running a 64 bit server version of a popular Open Source Operating Unix system: SUSE Linux SLES 9 (kernel 2.6.5). We also included an older Xeon 3.06 GHz ( Galatin, 1 MB L3) running SUSE SLES 8 (kernel 2.4.19) just for reference purposes. Some of the workstation tests were done on Windows XP SP2.

IBM PowerPC 970FX: Superscalar monster
POST A COMMENT

112 Comments

View All Comments

  • elvisizer - Friday, June 03, 2005 - link

    why didn't you run some tests with YD linux on the g5?!?!?!?!?!?!? you could've answered the questions you posed yourself!!!!!
    argh.
    and you definitly should've included after effects. "we don't have access to that software" what the heck is THAT about?? you can get your hands on a dual 3.6 xeon machine, a dual 2.5 gr, and adual 2.7 g5, and you can't buy a freaking piece of adobe software at retail?!?!?!?!?!
    some seroiusly weird decisions being made here.
    other than that, the article was ok. re-confirmed suspicions i've had for awhile about OS X server handling large numbers of thread. My OS X servers ALWAYS tank hard with lots of open sessions, so i keep them around only for emergencies. They are so very easy to admin, tho, they're still attractive to me for small workgroup sizes. like last month, I had to support 8 people working on a daily magazine being published at e3. litterally inside the convention center. os x server was perfect in that situation.
    Reply
  • Rosyna - Friday, June 03, 2005 - link

    There appears to be either a typo or a horrible flaw in the test. It says you used GCC 3.3.3 but OS X comes with gcc version 3.3 20030304 (Apple Computer, Inc. build 1809).

    If you did use GCC 3.3.3 then you were giving the PPC a severe disadvantage as the stock GCC has almost no optimizations for PPC while it has many for x86.
    Reply
  • Eug - Friday, June 03, 2005 - link

    "But do you really think that Oracle would migrate to this if it wasn't on a par?"

    [Eug dons computer geek wannabe hat]

    There are lots of reasons to migrate, and I'm sure absolute performance isn't always the primary concern. We won't know the real performance until we actually see tests on Oracle/Sybase.

    My uneducated guess is that they won't be anywhere near as bad as the artifical server benches might suggest, but OTOH, I could easily see Linux on G5 significantly besting OS X on G5 for this type of stuff.

    ie. The most interesting test I'd like to see is Oracle on the G5, with both OS X and Linux, compared to Xeon and Opteron with Linux.

    And yeah, it would be interesting to see what gcc 4 brings to the table, since 3.3 provides no autovectorization at all. It would also be interesting to see how xlc/xlf does, although that doesn't provide autovectorization either. Where are the autovectorizing IBM compilers that were supposed to come out???
    Reply
  • melgross - Friday, June 03, 2005 - link

    As none of us has actual experiance with this, none of us can say yes or no.

    But do you really think that Oracle would migrate to this if it wasn't on a par? After all Ellison isn't on Apple's board anymore, so there's nothing to prove there.

    I also remember that going back to Apple's G4 XServes, their performance was better than the x86 crowd, and the Sun servers as well. Those tests were on several sites. Been a while though.
    Reply
  • JohanAnandtech - Friday, June 03, 2005 - link

    querymc: Yes, you are right. The --noaltivec flag and the comment that altivec was enabled by default in the gcc 3.3.3 compiler docs made me believe there is autovectorization (or at least "scalarisation"). As I wrote in the article we used -O2 and and then tried a bucket load of other options like --fast-math --mtune=G5 and others I don't remember anymore but it didn't make any big difference. Reply
  • querymc - Friday, June 03, 2005 - link

    The SSE support would probably also be improved by using GCC 4 with autovectorization, I should note. There's a reason it does poorly in GCC 3. :) Reply
  • querymc - Friday, June 03, 2005 - link

    Johan: I didn't see this the first time through, but you need to make a slight clarification to the floating point stuff. There is no autovectorization capability in GCC 3.3. None. There is limited support for SSE, but that is not quite the same, as SSE isn't SIMD to the extent that AltiVec is. If you want to use the AltiVec unit in otherwise unaltered benchmarks, you don't have a choice other than GCC 4 (and you need to pass a special flag to turn it on).

    Also, what compiler flags did you pass on each platform? For example, did you use --fast-math?
    Reply
  • JohanAnandtech - Friday, June 03, 2005 - link

    Melgross: Apple told me that most xserves in europe are sold as "do it all". A little webserver (apache), a database sybase, samba and so on. They didn't have any client who had heavy traffic on the webserver, so nobody complains.

    Sybase/oracle seems to have done quite a bit of work to get good performance out of Mac OS-x, so it must be interesting to see how they managed to solve those problems. But I am sceptical that Oracle/Sybase runs faster on Mac OS x than on Linux.
    Reply
  • Icehawk - Friday, June 03, 2005 - link

    Interesting stuff. I'd like to see more data too. Mmm Solaris.

    Unfortunately the diagrams weren't labeled for the most part (in terms of "higher is better") making it difficult to determine the results.

    And the whole not displaying on FF properly... come on.
    Reply
  • NetMavrik - Friday, June 03, 2005 - link

    You can say that again! NT shares a whole lot more than just similarites to VMS. There are entire structures that are copied straight from VMS. I think most people have forgotten or never knew what "NT" stood for anyway. Take VMS, increment each letter by one, and you get WNT! New Technology my a$$. Reply

Log in

Don't have an account? Sign up now