Introduction & Goals of the Build

The market for network attached storage (NAS) devices has registered huge gains over the last few years. In keeping up with the market trends, the coverage of NAS units has also seen an uptick on AnandTech since the middle of 2010. Followers of our NAS reviews have seen the standard Intel NASPT benchmarks and file transfer test results along with a qualitative coverage of the NAS’s operating system / user interface. The reviews briefly touch upon miscellaneous factors such as power consumption. The feedback from the readers as well as the industry pointed towards some essential NAS aspects such as performance under loading from multiple clients being ignored. Towards the end of 2011, we started evaluating approaches to cover these aspects.

Our goal was to simulate a SMB (Small to Medium Business) / SOHO (Small Office / Home Office) type environment for the NAS under test. From the viewpoint of our testing, we consider a SMB as any setup with 5 - 25 distinct clients for the NAS. Under ideal circumstances, we could have had multiple PCs accessing the NAS at the same time. However, we wanted a testbed which didn’t require too much space or consume a lot of power. It was also necessary that the testbed be easily administered. These requirements ruled out the possibility of multiple distinct physical machines making up the testbed.

In order to set up multiple virtual machines (VMs), we wanted to build a multi-processor workstation. One of the primary challenges when running a large number of VMs on a single machine is the paucity of resources. It is important not to be disk bound. Therefore, we set out with the intent of providing each VM with its own processor core, physical primary disk and network port. After taking a look at the options, we decided to build a dual processor workstation capable of running up to 12 VMs. In the first four sections, we will take a look at the hardware options that we chose for the build.

Following the discussion of the hardware aspects, we have a section on the software infrastructure. This includes details of the host and guest operating systems, the benchmarking software and scripts used in the testing process. We initially gave a trial run of the new test components on two different NAS units, the Synology DS211+ and the Thecus N4800. Results from the new test components are presented in the two sections preceding the concluding remarks.

Hardware Build - Motherboard, CPUs and Coolers
POST A COMMENT

74 Comments

View All Comments

  • Zarquan - Thursday, September 06, 2012 - link

    I might be missing something really obvious here .. but if the highest power consumption was 146.7 W (IOMeter 100% Seq 100% Reads [ 12 VMs ]), then why did you need a 850W power supply ?

    Either the system is using a lot more than the 146.7 W you quoted in your power consumption figures, or the power supply is way over specified.
    http://www.anandtech.com/show/6241/building-the-20...
    Reply
  • ganeshts - Thursday, September 06, 2012 - link

    This is not the only workload we plan to run on the machine.

    We were ready to put up with some inefficiency just to make sure we didn't have to open up the machine and put in a more powerful PSU down the road. The 850W PSU should serve the testbed well for future workloads which might be more stressful.
    Reply
  • ydafff - Thursday, September 06, 2012 - link

    I’m VCP:5 / 4 and MCSE and MCITP:VA / EA
    This setup for 12 VMs way overkill..
    Best for this test bad will be VMware vSphere Hypervisor( Free ESXi) – much better memory and vCPU and storage management or MS Hyper-V 2008 R2 free server - try to use free Hyper-V 2008 server much less HD space and compute resources needed
    Regarding VMs density you could easy run all 12 VMs(1-2 GB memory) from single Sandy Bridge-E CPU or 1155 Xeon(i7) CPU with really good performance. Storage 2x intel 320 series 600GB SSD in RAID 1(you will need Redundancy) with thin provisioning will do trick.
    Reply
  • ganeshts - Thursday, September 06, 2012 - link

    ydaff, Thanks for the inputs.

    We are working towards increasing the VM density in the current testbed itself. As another reader pointed out, 12 VMs were not enough to stress the Thecus N4800.

    I decided not go with the Hyper-V 2008 R2 free server because I needed to run some programs / scripts in the host OS and the Z9PE-D8 WS had drivers specifically for Win Server 2008 R2.
    Reply
  • eanazag - Thursday, September 06, 2012 - link

    Seems like a lot of people are talking about it being over the top. I agree with the route Anandtech took - could have even went farther. How far can they be pushed is my question? I want to see when they start smoking NAS's. The article and concept is great. I like to know how the site sets up its test scenarios and equipment. It lets me know if my use case is higher or lower and what the device being reviewd can do. I look at your testing methods to decide if your data is worth considering. I continue to be an avid reader here because of the effort placed. If you had one PC with one NIC, anyone in their house can test it like that. Why even write reviews about NAS's if that is how far you are going to test? Great job, Anandtech.

    I have some applications at work I would like to create repeatable tests for. An article about how to automate applications for testing would be helpful. I saw that we got a little in this article. I would also like to see more enterprise equipment being tested if you can swing it.
    Reply
  • KingHerod - Friday, September 07, 2012 - link

    NAS devices are convenient and generally low-power, but it would be nice to see a comparison to some real metal with a real server OS like Server 2k8R2. Maybe a repurposed older computer with a couple drives mirrored and an actual, low end server with some SAS drives. Reply
  • dbarth1409 - Friday, September 07, 2012 - link

    Ganesh,

    Good work. I'm looking forward to seeing some future test results.
    Reply
  • dijuremo - Monday, September 10, 2012 - link

    This asus motherboard is not truly ACPI compliant, ASUS knows it and they do not want to fix it. Their tech support has given stupid excuses to posts from users trying to run Windows 8 and 2012 server on it.

    If you boot either Windows 8 or 2012 server RTM on it, it blue screens with error:
    0xA5: ACPI_BIOS_ERROR

    You just need to check the reviews at the egg to confirm.

    http://www.newegg.com/Product/Product.aspx?Item=N8...
    Reply
  • ganeshts - Monday, September 10, 2012 - link

    Looks like Asus has updated support files for Windows 8. Reply
  • VTArbyP - Monday, September 10, 2012 - link

    I wonder what would happen if you did use Linux for the host and VM oses? I suppose that would become a test of Linux vs Windows! Heh.
    More seriously, why not add at least one VM of "the current popular distro" of Linux and and a Mac OS X machine Use them with NTFS drivers and / or reformat a NAS partition to native ext# and another to HFS+. Point being, how does the NAS react to mixed client loads and not all smb, as someone commented above. The other test this beast seems ideal for is comparisons of several non-local storage solutions - someone mentioned iSCSI, and I can imagine tryiing some types of SANs - might add an infiniband adapter - being of interest. The point of that would simply be to see what form of non-local storage was fastest, best value, easiest to maintain, etc, etc for us mortals who want to connect 6 - 12 machines, We, being the folks who DON'T run lans for a living and are not up to speed on what IT people already know
    Reply

Log in

Don't have an account? Sign up now