Earlier this week NVIDIA announced their new top-end single-GPU consumer card, the GeForce GTX Titan. Built on NVIDIA’s GK110 and named after the same supercomputer that GK110 first powered, the GTX Titan is in many ways the apex of the Kepler family of GPUs first introduced nearly one year ago. With anywhere between 25% and 50% more resources than NVIDIA’s GeForce GTX 680, Titan is intended to be the ultimate single-GPU card for this generation.

Meanwhile with the launch of Titan NVIDIA has repositioned their traditional video card lineup to change who the ultimate video card will be chasing. With a price of $999 Titan is decidedly out of the price/performance race; Titan will be a luxury product, geared towards a mix of low-end compute customers and ultra-enthusiasts who can justify buying a luxury product to get their hands on a GK110 video card. So in many ways this is a different kind of launch than any other high performance consumer card that has come before it.

So where does that leave us? On Tuesday we could talk about Titan’s specifications, construction, architecture, and features. But the all-important performance data would be withheld another two days until today. So with Thursday finally upon us, let’s finish our look at Titan with our collected performance data and our analysis.

Titan: A Performance Summary

  GTX Titan GTX 690 GTX 680 GTX 580
Stream Processors 2688 2 x 1536 1536 512
Texture Units 224 2 x 128 128 64
ROPs 48 2 x 32 32 48
Core Clock 837MHz 915MHz 1006MHz 772MHz
Shader Clock N/A N/A N/A 1544MHz
Boost Clock 876Mhz 1019MHz 1058MHz N/A
Memory Clock 6.008GHz GDDR5 6.008GHz GDDR5 6.008GHz GDDR5 4.008GHz GDDR5
Memory Bus Width 384-bit 2 x 256-bit 256-bit 384-bit
VRAM 6GB 2 x 2GB 2GB 1.5GB
FP64 1/3 FP32 1/24 FP32 1/24 FP32 1/8 FP32
TDP 250W 300W 195W 244W
Transistor Count 7.1B 2 x 3.5B 3.5B 3B
Manufacturing Process TSMC 28nm TSMC 28nm TSMC 28nm TSMC 40nm
Launch Price $999 $999 $499 $499

On paper, compared to GTX 680, Titan offers anywhere between a 25% and 50% increase in resource. At the starting end, Titan comes with 25% more ROP throughput, a combination of Titan’s 50% increase in ROP count and simultaneous decrease in clockspeeds relative to GTX 680. Shading and texturing performance meanwhile benefits even more from the expansion of the number of SMXes, from 8 to 14. And finally, Titan has a full 50% more memory bandwidth than GTX 680.

Setting aside the unique scenario of compute for a moment, this means that Titan will be between 25% and 50% faster than GTX 680 in GPU limited situations, depending on the game/application and its mix of resource usage. For an industry and userbase still trying to come to terms with the loss of nearly annual half-node jumps, this kind of performance jump on the same node is quite remarkable. At the same time it also sets expectations for how future products may unfold; one way to compensate for the loss of the rapid cadence in manufacturing nodes is to spread out the gains from a new node over multiple years, and this is essentially what we’ve seen with the Kepler family by launching GK104, and a year later GK110.

In any case, while Titan can improve gaming performance by up to 50%, NVIDIA has decided to release Titan as a luxury product with a price roughly 120% higher than the GTX 680. This means that Titan will not be positioned to push the price of NVIDIA’s current cards down, and in fact it’s priced right off the currently hyper-competitive price-performance curve that the GTX 680/670 and Radeon HD 7970GE/7970 currently occupy.

February 2013 GPU Pricing Comparison
AMD Price NVIDIA
  $1000 GeForce Titan/GTX 690
(Unofficial) Radeon HD 7990 $900  
Radeon HD 7970 GHz Edition $450 GeForce GTX 680
Radeon HD 7970 $390  
  $350 GeForce GTX 670
Radeon HD 7950 $300  

This setup isn’t unprecedented – the GTX 690 more or less created this precedent last May – but it means Titan is a very straightforward case of paying 120% more for 50% more performance; the last 10% always costs more. What this means is that the vast majority of gamers will simply be shut out from Titan at this price, but for those who can afford Titan’s $999 price tag NVIDIA believes they have put together a powerful card and a convincing case to pay for luxury.

So what can potential Titan buyers look forward to on the performance front? As always we’ll do a complete breakdown of performance in the following pages, but we wanted to open up this article with a quick summary of performance. So with that said, let’s take a look at some numbers.

GeForce GTX Titan Performance Summary (2560x1440)
  vs. GTX 680 vs. GTX 690 vs. R7970GE vs. R7990
Average +47% -15% 34% -19%
Dirt: Showdown 47% -5% 3% -38%
Total War: Shogun 2 50% -15% 62% 1%
Hitman: Absolution 34% -15% 18% -15%
Sleeping Dogs 49% -15% 17% -30%
Crysis 54% -13% 21% -25%
Far Cry 3 35% -23% 37% -15%
Battlefield 3 48% -18% 52% -11%
Civilization V 59% -9% 60% 0

Looking first at NVIDIA’s product line, Titan is anywhere between 33% and 54% faster than the GTX 680. In fact with the exception of Hitman: Absolution, a somewhat CPU-bound benchmark, Titan’s performance relative to the GTX 680 is actually very consistent at a narrow 45%-55% range. Titan and GTX 680 are of course based on the same fundamental Kepler architecture, so there haven’t been any fundamental architecture changes between the two; Titan is exactly what you’d expect out of a bigger Kepler GPU. At the same time this is made all the more interesting due to the fact that Titan’s real-world performance advantage of 45%-55% is so close to its peak theoretical performance advantage of 50%, indicating that Titan doesn’t lose much (if anything) in efficiency when scaled up, and that the games we’re testing today favor memory bandwidth and shader/texturing performance over ROP throughput.

Moving on, while Titan offers a very consistent performance advantage over the architecturally similar GTX 680, it’s quite a different story when compared to AMD’s fastest single-GPU product, the Radeon HD 7970 GHz Edition. As we’ve seen time and time again this generation, the difference in performance between AMD and NVIDIA GPUs not only varies with the test and settings, but dramatically so. As a result Titan is anywhere between being merely equal to the 7970GE to being nearly a generation ahead of it.

At the low-end of the scale we have DiRT: Showdown, where Titan’s lead is less than 3%. At the other end is Total War: Shogun 2, where Titan is a good 62% faster than the 7970GE. The average gain over the 7970GE is almost right in the middle at 34%, reflecting a mix of games where the two are close, the two are far, and the two are anywhere in between. With recent driver advancements having helped the 7970GE pull ahead of the GTX 680, NVIDIA had to work harder to take back their lead and to do so in an concrete manner.

Titan’s final competition are the dual-GPU cards of this generation, the GK104 based GTX 690, and the officially unofficial Tahiti based HD 7990 cards, which vary in specs but generally have just shy of the performance of a pair of 7970s. As we’ve seen in past generations, when it comes to raw performance one big GPU is no match for two smaller GPUs, and the same is true with Titan. For frames per second and nothing else, Titan cannot compete with those cards. But as we’ll see there are still some very good reasons for Titan’s existence, and areas Titan excels at that even two lesser GPUs cannot match.

None of this of course accounts for compute. Simply put, Titan stands alone in the compute world. As the first consumer GK110 GPU based video card there’s nothing quite like it. We’ll see why that is in our look at compute performance, but as far as the competitive landscape is concerned there’s not a lot to discuss here.

The Final Word On Overclocking
Comments Locked

337 Comments

View All Comments

  • etriky - Sunday, February 24, 2013 - link

    OK, after a little digging I guess I shouldn't be to upset about not having Blender benches in this review. Tesla K20 and GeForce GTX TITAN support was only added to Blender on the 2/21 and requires a custom build (it's not in the main release). See http://www.miikahweb.com/en/blender/svn-logs/commi... for more info
  • Ryan Smith - Monday, February 25, 2013 - link

    As noted elsewhere, OpenCL was broken in the Titan launch drivers, greatly limiting what we could run. We have more planned including SLG's LuxMark, which we will publish an update for once the driver situation is resolved.
  • kukreknecmi - Friday, February 22, 2013 - link

    If you look at Azui's PDF, with using different type of kernel , results for 7970 are :

    SGEMM : 2646 GFLOP
    DGEMM : 848 GFLOP

    Why did u take the lowest numbers for 7970 ??
  • codedivine - Friday, February 22, 2013 - link

    This was answered above. See one of my earlier comments.
  • gwolfman - Friday, February 22, 2013 - link

    ASUS: http://www.newegg.com/Product/Product.aspx?Item=N8...
    OR
    Titan gfx card category (only one shows up for now): http://www.newegg.com/Product/ProductList.aspx?Sub...

    Anand and staff, post this in your news feed please! ;)
  • extide - Friday, February 22, 2013 - link

    PLEASE start including Folding@home benchmarks!!!
  • TheJian - Sunday, February 24, 2013 - link

    Why? It can't make me any money and isn't a professional app. It tells us nothing. I'd rather see photoshop, premier, some finite analysis app, 3d Studiomax, some audio or content creation app or anything that can be used to actually MAKE money. They should be testing some apps that are actually used by those this is aimed at (gamers who also make money on their PC but don't want to spend $2500-3500 on a full fledged pro card).

    What does any card prove by winning folding@home (same with bitcoin crap, botnets get all that now anyway)? If I cure cancer is someone going to pay me for running up my electric bill? NOPE. Only a fool would spend a grand to donate electricity (cpu/gpu cycles) to someone else's next Billion dollar profit machine (insert pill name here). I don't care if I get cancer, I won't be donating any of my cpu time to crap like this. Benchmarking this proves nothing on a home card. It's like testing to see how fast I can spin my car tires while the wheels are off the ground. There is no point in winning that contest vs some other car.

    "If we better understand protein misfolding we can design drugs and therapies to combat these illnesses."
    Straight from their site...Great I'll make them a billionaire drug and get nothing for my trouble or my bill. FAH has to be the biggest sucker pitch I've ever seen. Drug companies already rip me off every time I buy a bottle of their pills. They get huge tax breaks on my dime too, no need to help them, or for me to find out how fast I can help them...LOL. No point in telling me sythentics either. They prove nothing other than your stuff is operating correctly and drivers set up right. Their perf has no effect on REAL use of products as they are NOT a product, thus not REAL world. Every time I see the word synthetic and benchmark in the same sentence it makes me want to vomit. If they are limited on time (usually reviewers are) I want to see something benchmarked that I can actually USE for real.

    I feel the same way about max fps. Who cares? You can include them, but leaving out MIN is just dumb. I need to know when a game hits 30fps or less, as that means I don't have a good enough card to get the job done and either need to spend more or turn things down if using X or Y card.
  • Ryan Smith - Monday, February 25, 2013 - link

    At noted elsewhere, FAHBench is in our plans. However we cannot do anything further until NVIDIA fixes OpenCL support.
  • vanwazltoff - Friday, February 22, 2013 - link

    the 690, 680 and 7970 have had almost a year to brew and improve with driver updates, i suspect that after a few drivers and an overclock titan will creep up on a 690 and will probably see a price deduction after a few months. dont clock out yet, just think what this could mean for 700 and 800 series cards, its obvious nvidia can deliver
  • TheJian - Sunday, February 24, 2013 - link

    It already runs 1150+ everywhere. Most people hit around 1175 max OC stable on titan. Of course this may improve with aftermarket solutions for cooling but it looks like they hit 1175 or so around the world. And that does hit 690 perf and some cases it wins. In compute it's already a winner.

    If there is no die shrink on the next gens from either company I don't expect much. You can only do so much with 250-300w before needing a shrink to really see improvements. I really wish they'd just wait until 20nm or something to give us a real gain. Otherwise will end up with a ivy,haswell deal. Where you don't get much (5-15%). Intel won't wow again until 14nm. Graphics won't wow again until the next shrink either (full shrink, not the halves they're talking now).

Log in

Don't have an account? Sign up now