Recap: 802.11ac Wireless Networking

We’ve had quite a few major wireless networking standards over the years, and while some have certainly been better than others, I have remained a strong adherent of wired networking. I don’t expect I’ll give up the wires completely for a while yet, but Western Digital and Linksys sent me some 802.11ac routers for testing, and for the first time in a long time I’m really excited about wireless.

I’m not a good representative of normal PC users, but it has been a long time, relatively speaking, since we first saw Draft-N wireless options—Gary Key (now with ASUS) wrote about it what seems like an eternity ago, and in Internet time I suppose seven years is pretty darn close. Granted, 802.11ac has really been “done” for about two years now, but the first laptops to arrive with 11ac adapters are less than a month old—up until now, 11ac has been almost exclusively used for routers and bridges.

Before I get into a few performance specifics of 802.11ac testing, let me start by saying what is bad with 802.11n. The single biggest issue for me is the lack of quality implementations in so many of our devices. If you look at Apple’s MacBook Pro offerings, they’ve all been 3x3:3 MIMO for several years, offering connection speeds of up to 450Mbps. The problem with that “up to 450Mbps” is that it’s influenced by several factors.

Of course you need to know what sort of signal quality you have, but by far the bigger issue is this: are you talking about 2.4GHz 802.11n or 5GHz 802.11n? If you’re talking about the former, you can pretty much throw any thoughts of 450Mbps out the window. The bigger problem with “up to 450Mbps” is that the vast majority of laptops and routers don’t offer such support; Apple's 3x3:3 dual-band implementation is better than 99% of Windows laptops (and yes, I just made up that statistic).

About a year ago, I reviewed a router and repeater from Amped Wireless and found them to be good if not exceptional products. Compared to most of the wireless solutions people end up with, they were a breath of fresh air and I’ve actually been using them for the past year with very few complaints. On the other hand, I’ve had dozens of laptops come and go during the same time frame. Can you guess what the most common configuration is, even on more expensive laptops? If you said “single-band 2.4GHz 1x1:1”, give yourself a cookie.

We’re thankfully starting to see more laptops with dual-band 2x2:2 implementations, but even when you get that there’s still a big difference in actual performance, depending on notebook design, drivers, and other “special sauce”. We’ll see this in the charts on the next page, and it’s often more a statement of a particular laptop’s wireless implementation as opposed to representing what you might get from a particular wireless chipset.

In my opinion, the great thing about 802.11ac then is that any product claiming 802.11ac compliance is automatically dual-band. 11ac actually only works on the 5GHz channels, so for 2.4GHz support it’s no better than existing 802.11n solutions, but it’s fully backwards compatible and, as we’ll see in a moment, you really don’t want to use 2.4GHz wireless networking unless you’re primarily concerned with range of the signal. This is a shorter introductory piece, so don’t expect a full suite of benchmarks, but let’s just cut straight to the chase and say that there are a lot of situations in which I’ve found 802.11ac to be substantially faster than 802.11n.

A Quick Test of Real-World Wireless Performance
POST A COMMENT

135 Comments

View All Comments

  • ddriver - Wednesday, July 10, 2013 - link

    No latency test? Really? Reply
  • JarredWalton - Wednesday, July 10, 2013 - link

    Did you read the part in the article where I said, "This is a shorter introductory piece, so don’t expect a full suite of benchmarks..." I guess not.

    This was not intended to be a full review, but just to show that AC can be quite useful, and that we're working on testing some AC routers (which is in part a way of sending out a fishing line for additional products -- I've got two more coming already). The full review will look at latency, consistency of connection, and Rx/Tx speeds under more than one workload and at more than one location. Stay tuned....
    Reply
  • ddriver - Wednesday, July 10, 2013 - link

    Well, it is not like pinging is very challenging or time consuming, but whatever. Hopefully the full review will also include multiplayer gaming as well as other less typical workloads and naturally CPU load. Reply
  • JarredWalton - Wednesday, July 10, 2013 - link

    Gaming is basically out, as I don't have the necessary equipment to test every single combination with the various WiFi adapters. I could test one adapter on one system with multiple routers, but most laptops have a whitelist of supported WiFi cards in their firmware so swapping cards in/out of a system doesn't generally work (and even if it does work with some, I'm not ready to tear apart someone's notebook review unit to accomplish the necessary testing).

    Please keep in mind that "comprehensive" looks at a technology can end up scaling the amount of testing time rapidly. If you have four routers and six adapters, you're already looking at 24 combinations to test. Now add in two more test locations and you get 96 combinations! Just the one "simple" test conducted in this article at two locations required a full day of testing to complete. Adding latency, copying lots of smaller files, then do the copy to the server rather than from the server (testing transmit rather than receive), and add in two more test locations to get an idea of how things look at 50' and 75', and I'm easily looking at a week or two dedicated purely to testing WiFi.

    Simply put: I have a lot of other stuff on my plate, and while WiFi is definitely interesting, at some point I need to draw the line on what's in and what's out and write about the experience. My plan for now is to start with one router and several adapters (plus the bridge). Review that, then if everything checks out I can do the same tests on another router and so on. And in the meantime, I have a couple laptop reviews to complete, plus some other items as well, and a summer vacation to take. It might be a while before I'm done with this. :-)
    Reply
  • kenthaman - Wednesday, July 10, 2013 - link

    You should add the Ubiquity UniFi UAP-AC to your wifi testbed. I'd really like to see how their numbers rate compared to the other devices you've tested. Reply
  • JarredWalton - Wednesday, July 10, 2013 - link

    We should be getting the UniFi 3.0 for testing as well. Reply
  • fc528e - Wednesday, July 10, 2013 - link

    Very nice comprehensive review of 11ac as it currently stands! I'm really glad you were able to compile these results from an array of devices. Sounds like a worthy upgrade (assuming good hardware on the receiving end is there). Reply
  • Laststop311 - Wednesday, July 10, 2013 - link

    I'll never give up my wired gbit connection. It's much easier knowing when the net messes up that you know its not the connection to the comp. And when you reformat the intel ethernet nic's just kinda work wifi gotta find drivers. I can see changing to 10gbit wired when that penetrates the consumer space. Especially with ssd's really need the bandwidth. SSD's are basically bottlenecked by the 6 gbps sata III limitation (the top ssd's at least). So hopefully 10gbit ethernet will be standard when sata express is standard. Wired is lower latency as well. People can't hack into it with a laptop parked in front of your house and steal bandwidth and do illegal stuff, neighbors can't hack it and mooch free internet off you. And there is still a ton of value in houses coming pre ethernet wired with ports in every room. I know that will be a requirement usb 3.0 ports and 10gbit ethernet ports with the power jacks in the next house i buy. Reply
  • HisDivineOrder - Thursday, July 11, 2013 - link

    It's sad. I haven't seen a router that compelled me since my DIR-655. Years and years now. It isn't even that good, requiring reboots every month or so. I don't trust the new firmwares they put out any more and perhaps the new wireless hotness would be nice, but the truth is I don't feel like throwing down another $50-200 for the new hotness and have it be same as the old hotness with a slightly faster speed.

    Gigabit is all I need. I've been vaguely tempted by the faster processors and greater memory in recent Asus routers, but this article shows when you get outside of the same room, wireless starts to show only very narrow differences.

    And latency still sucks. For the same reason I don't use wireless keyboards and mice for my everyday system is the same reason I wouldn't use wireless networking on my everyday system.

    That said, having wireless is better than not just for the option. Until tablets, smartphones, consoles, laptops, and everything else use the NEW wireless spec (and it becomes officially released instead of a beta), there's just no reason to buy in yet.

    By the time they finally get around to putting out affordable Nexus-class devices with it integrated and iPad's with it and most laptops have it, we should have cheaper and better routers with it, too.
    Reply
  • thetoad30 - Thursday, July 11, 2013 - link

    I think you are sorely mistaken with this article. Here's why:

    802.11ac will combine up to three 80 mhz 5 GHz streams. As each channel is 20MHz, you're looking at four channels per stream, by three streams, meaning 12 channels being used by ONE router. Since there are only 21 channels right now, one router takes up more than half the available spectrum in the 5GHz channel.

    Remember 11n in the 2.4 GHz spectrum? Why didn't anyone get 40MHz channels? Because there were only three non-overlapping channels in the spectrum, and the number of people using it meant that interference was all but impossible to avoid in common neighborhoods. 11ac just brings that problem to the 5 GHz channel.

    Second, Apple doesn't allow 40MHz three stream mode in their 2.4 GHz band - you are limited to 2x2 at 270 mbps for the same reason I outlined above.

    People think that the 5GHz spectrum is the answer for interference - and it was because it had so many options to choose from to limit interference - but now that you're combining channels and soaking up more bandwidth, it will soon be just like the 2.4 GHz fiasco.

    Just thought you'd want readers to know this before pouring money into products that eventually will have the same problems as before.
    Reply

Log in

Don't have an account? Sign up now