The future is performance per watt.

Given the way that the energy markets have gone during the past year, it was fairly obvious that there was going to be a focus on power, and performance per watt. Some may say that power is irrelevant and performance is key. While performance is important, performance per Watt is more important. Both Intel and AMD are focusing on ways of delivering more performance with less power - it is the future. We're facing rising energy prices everyday, and those numbers trickle down to everyone, whether you are drying your clothes, or running a few racks of servers at a datacenter.

Recently, we spoke to a bandwidth provider in one of the largest datacenters on the US east coast. The datacenter that this provider uses for its services is out of power. They can't add any more racks because the datacenter doesn't have enough power. We're not talking about a small datacenter either; this is a very large datacenter that serves some of the world's largest websites. They can't get anymore power because government regulations won't allow it; so, now what? They have to find ways to reduce power consumption.

Space is also a concern at most datacenters, so blade systems are becoming very popular at the datacenter. IDC recently forecasted that blade systems would reach 8% of the server market this year, from 2% a year ago. Blade systems may solve the space problem, but add to the power problem, as you end up with a more power-dense environment.

Intel's performance per watt play won't come into full effect until next year, with Woodcrest. Rough numbers for Woodcrest put it at somewhere in the 80Watt range or less. If you think back over the past few years at how the focus has been all about performance, people seem to have overlooked where AMD is in terms of performance per Watt. The Opteron has been competitive with Intel since its inception not only on performance, but delivering that performance in a lower power envelope. The Opteron 280 processor is a 95 Watt part already, and has been very competitive with Intel's Xeon.

Intel Power/Performance Roadmap

Index Test Configuration
POST A COMMENT

67 Comments

View All Comments

  • gjmck - Monday, December 19, 2005 - link

    I'm curious that the numbers dont reflect the true difference between equivalently configured Intel vs. Opteron systems.

    The Dempsey processor TDP max is 130W and the Opteron is 95W. That difference is only 35W. The memory controller needed by Dempsey should only consume 60 - 80W. Using 80W that gives the maximum total difference between two eqivalently configured systems as 80 + 35 = 115W.

    Yet in the max processor utilization tests the difference was 214 Watts. So where is the extra 99 Watts being used? FBD? If so then when Opteron uses similar memory technology the delta will not be as great.

    Gregg McKnight
    Reply
  • Furen - Thursday, December 22, 2005 - link

    Intel's TDPs reflect "typical" power draw, while AMD's reflects the "worst-case scenario" power consumption, so they're not directly comparable. I very much doubt the memory controller uses even close to 80W, I'd say something like 20-30W for the whole northbridge is reasonable. FB does use more power, but that shouldn't be more than 5-10W per dimm. The rest is just the CPU being insanely power-inefficient. Reply
  • dannybin1742 - Friday, December 16, 2005 - link

    to keep anthing at a constant temperature, the heat going into the system must equal the heat being taken away. so if one system uses 200W of power, first you have the cost of the 200W, then you have the cost to remove the 200W of heat given off by the use of the system. on top of this air, conditioners are 20-25% efficient at best (if i remember correctly), so the amount of power used to remove the heat generated would take 3-4X more energy to remove. so in essence you are looking at at LEAST 2X amount of money calculated in the article. (i took a year of thermodynamics at school here, when i was an undergrad) in reality, you are probably looking at 4-6X to run and remove the heat from the data center. they should have looked at the opteron 2.2ghz HE (low voltage) i'd be interested to see what power numbers those put up.

    also, was winxp 2003 server 64 bit? or were all the tests run in 32 bit? i just skimmed over the article. how about linux?
    Reply
  • coldpower27 - Friday, December 16, 2005 - link


    Opteron 270 HE is the highest of the lower wattage 2 Way Opterons and it runs at 2.0GHZ.

    Reply
  • Viditor - Friday, December 16, 2005 - link

    quote:

    Opteron 270 HE is the highest of the lower wattage 2 Way Opterons and it runs at 2.0GHZ

    You mean 2 way dual core...
    The 250 HE is single core at 2.4 GHz...
    Reply
  • coldpower27 - Friday, December 16, 2005 - link

    Yes, I assume 2 Dual Core vs 2 Dual Core. Reply
  • haris - Friday, December 16, 2005 - link

    One question that kept nagging me was "How many "threads" were required to get the systems to each load level?" How much of a difference would it make to performance/watt if you have to take into account that processor 1 is also handling x% more/less threads then processor 2? Reply
  • Jason Clark - Friday, December 16, 2005 - link

    That will teach me for just taking a $1,000 measurement devices reported figures :) It actually figures out the cost, which obviously was wrong. I've updated the numbers, they should be correct.


    Again, sorry :)
    Reply
  • coldpower27 - Friday, December 16, 2005 - link

    Thanks alot.:) Reply
  • Biffa - Friday, December 16, 2005 - link

    With over a 1Ghz defecit (yes I know) in processor speed, and with only 1MB of cache per core rather than 2MB, I think we can safely say that Intel is still clutching at straws at this level of the game.

    Good PR on their part (always admired them for that) however its a crying shame that after all this time this is the best they can do.
    Reply

Log in

Don't have an account? Sign up now