HTPC Aspects : Introduction

Home Theater PC (HTPC) enthusiasts keep close tabs on launch of discrete GPUs which don't need a PCIe power connector. Such cards make it easy to upgrade an old PC with a low-wattage PSU into a multimedia powerhouse. Over the last decade or so, GPUs have implemented HTPC functionalities in response to consumer demand as well as changing / expected market trends. In the beginning, we had hardware acceleration for decode of MPEG-2. This was followed by H.264 / VC-1 acceleration (thanks to the emergence of Blu-rays), HD audio bitstreaming and 3D video support. More recently, we had support for playback and decode of videos in 4K resolution.

4K presents tangible benefits to consumers (unlike 3D), and market adoption is rapidly growing. In many respects, this is similar to how people migrated to 720p and 1080i TV sets when vendors started promoting high definition (HD). We know that these early adopters were stuck with expensive CRT-based TVs when the LCD-based 1080p sets came to the market at very reasonable prices. While there is no 'CRT-to-LCD'-like sea-change in the horizon, the imminent launch of HDMI '2.0' (The HDMI consortium wants to do away with version numbers for reasons known only to them) with 4Kp60 capability and display sinks fully compliant with that standard needs to be kept in mind by end users.

In the near future, it is expected that most of the 4K material reaching consumers will be encoded in H.264. Consumer devices such as the GoPro cameras still record 4K in that codec only. From a HTPC GPU perspective, it is imperative that we have support for 4K H.264 decoding. In fact, most real-time encoding activities would utilize H.264, but, a good HEVC (H.265) encoder would definitely be more efficient in terms of bitrate. The problem is that it is very difficult to make a good HEVC encoder operate in real-time. Archiving content wouldn't be a problem, though. So, it can be expected that content from streaming services / local backup (where the encoding is done offline) will move to HEVC first. A future-proof HTPC GPU would be capable of HEVC decode too.

Where does the Maxwell-based 750Ti stand when the above factors are taken into account? Make no mistake, the NVIDIA GT 640 happens to be our favourite HTPC GPU when 4K-capability is considered an absolute necessity. On paper, the 750Ti appears to be a great candidate to take over the reins from the GT 640. In order to evaluate the HTPC credentials, we put the 750Ti to test against the Zotac GT 640 as well as the Sapphire Radeon HD 7750.

In our HTPC coverage, we first look at GPU support for network streaming services, followed by hardware decoder performance for local file playback. This section also covers madVR. In the third section, we take a look some of the miscellaneous HTPC aspects such as refresh rate accuracy and hardware encoder performance.

The HTPC credentials of the cards were evaluated using the following testbed configuration:

NVIDIA GT 750Ti HTPC Testbed Setup
Processor / GPU Intel Core i7-3770K - 3.50 GHz (Turbo to 3.9 GHz)
NVIDIA GT 750Ti / Zotac GT 640 / Sapphire Radeon HD 7750
Motherboard Asus P8H77-M Pro uATX
OS Drive Seagate Barracuda XT 2 TB
Secondary Drive OCZ Vertex 2 60 GB SSD + Corsair P3 128 GB SSD
Memory G.SKILL ECO Series 4GB (2 x 2GB) SDRAM DDR3 1333 (PC3 10666) F3-10666CL7D-4GBECO CAS 9-9-9-24
Case Antec VERIS Fusion Remote Max
Power Supply Antec TruePower New TP-550 550W
Operating System Windows 8.1 Pro
Display / AVR
Sony KDL46EX720 + Pioneer Elite VSX-32
Acer H243H
Graphics Drivers GeForce v334.69 / Catalyst 14.1 Beta
Softwares CyberLink PowerDVD 13
MPC-HC 1.7.3
madVR 0.87.4

All the three cards were evaluated using the same hardware and software configuration. The Sapphire Radeon HD 7750 has an advantage in the power consumption department thanks to its passive cooling system. Other than that, we are doing apples-to-apples comparison when talking about power consumption numbers for various activities in the next few sections.

Meet The Reference GTX 750 Ti & Zotac GTX 750 Series HTPC Aspects : Network Streaming Performance
Comments Locked

177 Comments

View All Comments

  • Harry Lloyd - Tuesday, February 18, 2014 - link

    20 nm Maxwell will be epic. Gimme.
  • TheinsanegamerN - Tuesday, February 18, 2014 - link

    Imagine. OCed Geforce 690 level performance, out of a single chip, with 8 GB of RAM on a 512 bit bus, pulling the same amount of power as a geforce 770. One can dream....
  • ddriver - Tuesday, February 18, 2014 - link

    LOL, epic? Crippling FP64 performance further from 1/24 to 1/32 - looks like yet another nvidia architecture I'll be skipping due to abysmal compute performance per $ ratio...
  • JDG1980 - Tuesday, February 18, 2014 - link

    This card is designed for gaming and HTPC. Only a tiny fraction of users need FP64.
  • nathanddrews - Tuesday, February 18, 2014 - link

    So I guess we'll have to wait for the 750TIB before we can see SLI benchmarks. Two of these would be within reach of 770 while using considerably less power. Hypothetically, that is.
  • ddriver - Tuesday, February 18, 2014 - link

    You do realize the high end GPUs on the same architecture will have the same limitation?
  • Morawka - Tuesday, February 18, 2014 - link

    I thought the higher end Maxwell cards will have Denver/aRM cores on the PCB as well.
  • Mr Perfect - Wednesday, February 19, 2014 - link

    It might be a software/firmware limitation though. From what the compute enthusiasts have said, the only difference between the Titan's full compute and 780Ti's cut down compute is firmware based. They've got the same chip underneath, and some people hack their 780s for full compute. They're probably doing the same thing with the Maxwell stack.
  • chrnochime - Wednesday, February 19, 2014 - link

    Got link for the hack? Sounds interesting.
  • Mr Perfect - Thursday, February 20, 2014 - link

    I don't myself, but if you're interested look up IvanIvanovich over at bit-tech.net. He was talking about vbios mods and resistor replacement tweaks that can do that.

Log in

Don't have an account? Sign up now