Power Consumption

The Extreme Pro supports both DevSLP and slumber power. We are still working on a way to measure DevSLP power but in the mean time, we have to rely on slumber power measurements. Slumber power consumption is quite average -- it's not the most efficient drive we have tested but 100mW is pretty typical for a high performance SSD. What is awesome, however, is the load power consumption, because the drive doesn't exceed 3W in any case and stays at around 2W when under random write workload. Out of the high performance SSDs, the Extreme Pro is definitely the most power efficient because it supports DevSLP and slumber states, yet the load power consumption is very low too.

SSD Slumber Power (HIPM+DIPM) - 5V Rail

Drive Power Consumption - Sequential Write

Drive Power Consumption - Random Write

Performance vs. Transfer Size Final Words
Comments Locked

85 Comments

View All Comments

  • fackamato - Monday, June 16, 2014 - link

    Nice. Time to replace the old Intel 320 in RAID0 perhaps.
  • MikeMurphy - Monday, June 16, 2014 - link

    I always like a good review, but I'm finding SSD benchmarks difficult to respect when the real-world difference between this drive and the MX100 will be invisible to most users.
  • Samus - Tuesday, June 17, 2014 - link

    I agree, Ferrari's vs Lamborghini's. Anybody coming from a hard drive or even a last-gen SSD (like an Intel X25) isn't going to notice the difference between a $100 MX100 and a $200 Sandisk Extreme Pro
  • nathanddrews - Tuesday, June 17, 2014 - link

    No one will notice... except people that can and do distinguish between Ferraris and Lambos. I would imagine that someone that could tell the difference between a WD Velociraptor and a Seagate Barracuda would notice the difference between these two drives. Different users have different needs, that should be obvious.
  • MyrddinE - Tuesday, June 17, 2014 - link

    The issue is that many power users *think* they can tell the difference, but fail to in blind tests. This has been proven true frequently, usually in relation to more subjective domains like audio, but it applies everywhere. Sit a user at two computers, one overclocked 5%, one not, and it's likely not a single power user will be able to tell without a FPS meter or perf test result.
  • nathanddrews - Tuesday, June 17, 2014 - link

    Depends on what operation is boosted by 5%. If 5% allows you to maintain solid vsync vs dips, then you sure as heck will be able to tell. If 5% is the difference between completing 5% more editing projects in the same amount of time, then people who spend more will see a benefit. There's always a case to be made for measurable improvements.

    I'm sorry, but the audiophile straw man doesn't apply here.
  • Chaser - Tuesday, June 17, 2014 - link

    A 5 % performance difference with selective benchmarks using higher end SSD WON'T be noticed in real world user experiences. No need to apologize.
  • Kristian Vättö - Tuesday, June 17, 2014 - link

    5%? The difference between 240GB Extreme Pro and 256GB MX100 is more like 162% in the Storage Bench 2013...

    http://www.anandtech.com/bench/product/1240?vs=122...

    Bear in mind that that's real-world IOs played back on the drive, so it's not as synthetic as e.g. Iometer tests are.
  • TheWrongChristian - Wednesday, June 18, 2014 - link

    It's entirely synthetic, even if derived from real trace data.

    As I understand it, the trace is replayed as fast as possible. In the real world, the trace probably would have been collected over a period of hours or days. In those time frames, different levels of near instantaneous is the same if it's too quick for human perception. Consider the microcontroller controlling your washing machine. It does all it needs to do fast enough, that adding a 10000% faster CPU won;t make your washing clean any quicker.

    Plus, in the real world, other factors come into play. Had the trace been replayed in real time (as in takes as long to replay as to collect, pauses and all) different drives will do things like background GC, which will improve performance of the next burst of activity. A drive that takes 162% as long to replay the trace at full speed may complete the real time trace within milliseconds of the faster drive. Result, no perceptible difference to the user.
  • Kristian Vättö - Wednesday, June 18, 2014 - link

    Maximum idle time (i.e. when QD=0) is set to 25 seconds, otherwise the trace is played as it was collected. Sure that's still not the same as playing it back in real time but it's still quite a bit of time for the SSD to do GC.

Log in

Don't have an account? Sign up now