Closing Thoughts

This has been a huge undertaking, and we hope that you enjoy the results and overclocking information. Many guides of various forms already exist on the internet, but we really wanted to take a look at some of the options offered by the Venice core processors as well as trying to get by with value RAM instead of higher cost alternatives. After all, why save $60 on the CPU only to spend the same amount of money upgrading the RAM? So, other than a look at how to overclock, what have we learned?

The biggest deal for many people will be the results using standard PC-3200 RAM and higher memory dividers. While you won't be able to match the performance of a system that uses better quality RAM, the largest margin of victory was still under 10% (not counting instances where 2T command rates were used). The average was closer to 5%, and realistically, you won't notice a 5% performance loss. Outside of games, the performance losses attributed to value RAM are even less, with video encoding only losing a few percentages in speed. What it really comes down to is cost. We used a $190 CPU with $85 and $150 RAM. Going with a 3000+ and the value RAM saves almost $125 and should get you about 90 to 95% of the performance of the more expensive setup. That $125 could then be put towards a faster GPU, which will have a far greater impact on games than a 200 or even 400 MHz CPU upgrade.

Other than the value vs. quality RAM debate, what about the overall experience of overclocking this configuration? We were pretty impressed with the "budget" DFI motherboard. While I haven't personally used the Ultra-D, there were few problems on the Infinity that I couldn't deal with. Even with a good motherboard, though, overclocking can be exasperating at times. With value RAM rated at DDR400 2.5-3-3-8, it was at times difficult to get those timings even at speeds slightly below the rated DDR400, particularly on the high end of the overclocking scale. While I'd be willing to run 2.6 or even 2.7 GHz with the OCZ RAM, I have a feeling that long-term stability with the value RAM might require dropping to 2.5 to 2.6 GHz instead, or else increasing the timings to 3-3-3-8 or even 3-4-4-8. And speaking of timings, the 2T command rate should almost always be avoided. Results for a couple of settings were included, and overall, you would be better off running 100 or even 200 MHz slower with 1T command rate.

Something else that all of the graphs and results don't indicate is some of the oddities that can come up with overclocking. The SATA drive would sometimes make strange noises during the Windows XP boot sequence, almost like the HDD heads were seeking back and forth across the drive. Everything seems to indicate that the overclock is somehow to blame, and while a BIOS update might be able to address this particular issue, the end result is that XP would sometimes take up to 5 minutes to load at higher overclocks. Once loaded, everything worked fine, and the HDD was still running at full SATA spec. Another possible cause for delays in loading XP could be the networking subsystem. The testbed was connected to a gigabit switch, and we've experienced issues with network stability on overclocked PCs in the past. An MSI K8N Neo Platinum, for example, drops network connectivity after a day or two in many - but not all - overclocked configurations. We didn't experience this particular problem during testing of the DFI board, but it's something to look for on your own systems. Dropping the speed of the HyperTransport bus also helped avoid some - but not all - of the hard drive access delays. As we said, be prepared for some strange behavior now and then during overclocking.

The final comment that we want to make is about the long term viability of overclocking. We started this article with a warning, and we'll end it the same way. While we haven't encountered problems with the CPU yet, that doesn't mean that the chip won't simply die in a few weeks, months, or hopefully, not for years. Higher voltages in particular can affect CPU life, as they can accelerate electron drift. As we couldn't get to 2.7 GHz without running at 1.750V, we're a little hesitant to recommend that speed as a long-term solution. Given that 2.6 GHz is, at worst, only 4% slower, we'd recommend that as a better solution and go with the 1.650V setting. That's similar to how Intel supposedly binned CPUs back in the socket 7 days: they would reportedly increase CPU clock speeds until the chips failed, and then sell them two bins below the maximum stable clock speed. Whether that's rumor or in truth how they operate (operated?), running at speeds slightly slower than your "stable" maximum will be preferred by many. Crashing even every couple of days or once a week is too reminiscent of the Windows 95 era.

We've tried to get across the point that there are no guarantees with overclocking. Even with that disclaimer, we're pretty confident that the vast majority of Athlon 64 Venice chips will run at 2.4 GHz, and probably even 2.6 GHz. It may require higher voltages, better cooling, or relaxed memory timings, but with the right combination of parts, it's a relatively safe bet. Worst case scenario, try running at 3-4-4-9-2T memory timings, then try running at those timings and PC2700 or even PC2100 on the RAM. If it's still unstable, it might be your motherboard or some other factor holding you back. Even a 15% overclock is still pretty good, though, and you can probably get that without any special equipment other than an enthusiast motherboard.

That closes up this overclocking article. We have several similar articles planned, though we're interested in feedback from the readers. Was this too superficial? Do you want more details on tweaking memory timings beyond what we've mentioned? Or is the mix of benchmarks, settings, and results about right? Let us know. This article was long, with a large portion dedicated to introducing the uninitiated to the art and practice of overclocking. Future articles in this series will focus more on the end results and refer back to the concepts presented here. As always, any recommendations and comments are welcome.

Half-Life 2 Performance
Comments Locked

101 Comments

View All Comments

  • Lonyo - Tuesday, October 4, 2005 - link

    NO, DON'T, UNLESS YOU HAVE SOMETHING BETWEEN YOUR FINGER AND THE PASTE.

    Arctic Silver 5 instructions:
    DO NOT use your bare finger to apply or smooth the compound (skin cells, and oils again).
  • JarredWalton - Tuesday, October 4, 2005 - link

    Er... I didn't use Arctic Silver. Just the grease that came with the XP-90. I suppose there might be some thermal compounds that would be bad to touch. RTFM, right?

    Anyway, I'm not particularly convinced of the effectiveness of stuff like Arctic Silver. At one point, there was some story about how the AS batches for a while didn't actually contain any silver because the manufacturing company was skimping on costs (unbeknownst to Arctic Silver or their customers). I could be wrong, but I'm half-convinced AS is just a placebo effect. :)
  • poohbear - Tuesday, January 3, 2006 - link

    that wasnt arctic silver, that was another company entirely (name eludes me since it was 2+ years ago)
  • PrinceGaz - Tuesday, October 4, 2005 - link

    Regardless of the compound, you shouldn't touch it with your finger for the reason stated-- skin cells and grease from your finger will be left on the grease and they act as a barrier that reduces thermal-conduction. The simplest way to avoid this is to put a clean plastic bag over your hand before touching the compound as that will prevent any contamination.

    Regardless of what you say about AS5, numerous reviews of thermal-compunds have shown that compared to the the standard grease supplied with AMD boxed processors, AS5 alone can lower temperatures by a few degrees C. Given how cheap AS5 is compared with a decent heatsink (like the XP-90), it is a very good idea to get some AS5 if also buying a better HSF than what is supplied with the CPU. Using the grease supplied with the CPU or heatsink is a false economy.
  • THG64 - Tuesday, October 4, 2005 - link

    From my own experience I would say the BIOS is at least as important as the hardware itself.

    My A8N using 1004 final BIOS can run my A64 3200+ @ 2500 MHz (10 x 250, 1.4125V) and the memory at 208 MHz 1T (2x 1GB MDT DDR400 2.5-3-3-8). There is no chance to get a higher frequency running because I get memory problems at anything above 250 MHz (known as 1T bug). I tested the memory up to 217MHz so its not the limiting factor.

    Over the months I made many attempts to upgrade BIOS to newer versions and had no luck at all. The last version were even more interesting because of the A64 X2 support. No chance to get even up to 250MHz base. Only the reason has changed it seems. I made a HD upgrade in between and switched from a PATA drive to a SATA drive. This made it even worse.

    From 1005 to 1010 the BIOS limited the overclocking to 215 to 220 MHz through reworked memory options. After 1010 the memory isn't the problem anymore or at least not the main problem. Windows is loading until desktop and while the OS is still loading in background the HD LED stays on and the system freezes.
    As mentioned in the conclusion the SATA controller seems to limit the possible o/c.

    If there would be a lowcost PCIe SATA controller I would surely give it a try but at the moment I stay with 1004 and and more or less working SATA drive at 250 MHz.
  • lopri - Tuesday, October 4, 2005 - link

    Hi,

    I'm currently running X2 4800+ in my rig. I think I can safely OC it to 2750MHz. But the thing is, my RAM can only do 220MHz.. And the mobo doesn't support anything other than DDR400, DDR333, DDR266. (A8N-SLI Premium)

    What are the penalty of running a half-multi? I understand a half-multi won't get you the ideal memp speed, but in my situation I can make up for it by being able to raise the HTT some more. Basically I have following options.

    CPU (Max): 2750MHz @1.475V
    RAM (Max): 220MHz @2.75V (2-3-2-5-1T)

    Therefore, here is what I can do:

    1. 10.5 x 261: This gives me CPU 2741MHz and memory 211MHz. (from CPU-Z reading)
    2. 11 x 250: This give me CPU 2750Mhz and memory 196Mhz. (from CPU-Z reading)

    If I run Sandra I get almost the same CPU score from both settings. But I get a quite bigger memory bandwidth score from the Setting #1. In ideal world (that is, if only the final achieved speed matters), I definitely think the Setting #1 is better. I'd like to know if there is any "inherent" penalty attached to non-integer multipliers.

    Could you help me out? Thanks a bunch!

    lop





  • JarredWalton - Tuesday, October 4, 2005 - link

    At one point in time, the half multipliers didn't really work properly. They were just hiding some behind-the-scenes memory and bus tweaks. CPU-Z apparently doesn't report this properly. Anyway, if the system runs stable in either configuration, take the configuration that performs better. (Run a variety of tests - memory bandwidth alone doesn't tell the whole story.)
  • Sunrise089 - Tuesday, October 4, 2005 - link

    How important is that XP-90? I am wondering if you all feel it is necessary, feel it is necessary for long term safety, or really feel the $45 would be better spent elsewhere?

    P.S. - Thanks Anandtech. 3000+, X-800 GTO2, and value RAM costs about $400, and overclocked performs about as fast as a stock speed FX-55, x850 xt-pe, and high-end RAM costing $1000+. Your last two updates alone could have saved someone $600.
  • JarredWalton - Tuesday, October 4, 2005 - link

    You can get the XP-90 and a 92mm fan for about $40 shipped, but what's $5? How important is it? Well, I think you could probably get an extra 100 to 200 MHz relative to the retail HSF. I'll be working on testing a few cooling options in a future article. The XP-90 is quieter than the retail fan, but other than that... I'll have to see what difference it makes.
  • da2ce7 - Tuesday, October 4, 2005 - link

    When I over clocked my X2 3800+ I got up to 2.6ghz, at 1.45V;
    But What I am really want to know about it the both the “safe” and “generally stable” cup temperatures, a table of temps from below 20ºC to 80ºC, where the core goes up in smoke (well maybe not that), would be most helpful.

Log in

Don't have an account? Sign up now