Connectors and the 12V Rail Issue

Okay, we've chosen a few power supplies for our three test systems, but so far we've only looked at performance. There are still two additional issues that can affect your choice of power supply. We have previously shown that it is possible to run even high-end systems with a much lower rated power supply than you might expect. However, look at the offerings from the various manufacturers and you will frequently find that there are insufficient connectors for some configurations. The second issue involves the 12V rail(s), which is primarily responsible for powering the processor and graphics card(s).

Let's start with the first issue: having enough connectors. It is certainly possible to run a GeForce 8800 Ultra using only a 400W power supply; however, no one makes a 400W PSU with the necessary two PEG connectors. In fact, some power supplies in this range might not even have a single PEG connection. You could always use a Molex to PEG adapter(s), but you're probably better off selecting a different power supply.

Our entry-level system used the ATI Radeon HD 3650, which is a nice choice because it doesn't require any PEG connector. In the future users might want to upgrade graphics cards, however. The good news is that all of the entry-level PSUs be selected include a single 6-pin PEG connector, so they should be sufficient for powering up to a midrange (8800 GT/HD 3850) graphics card. If all you need is an average computer system, these power supplies will work fine.

The second issue is the amount of power the unit needs to provide in order to port graphics cards that use a single 6-pin jack. We could have included more cards, but for this example we've selected ATI's HD 3850/70 and NVIDIA's GeForce 8800 GTS and 9600 GT. We've created a table showing how much power these cards consume and where this power comes from under full load.

GPU Power Requirements by Connector
Vendor and Chip Through 6-pin Jack
Through PCI-E Slot
Total Power
ATI Radeon HD 3850 4.4A 52.8W 2.4A 28.8W 82W
ATI Radeon HD 3870 5.1A 61.2W 2.6A 31.2W 92W
NVIDIA GeForce 8800 GTS
7.2A 86.4W 4.8A 57.6W 144W
NVIDIA GeForce 9600 GT 4.9A 58.8W 4.0A 48.0W 107W

We need to check if the power supplies come with either one or two 12V rails. PSUs with two 12V rails usually have one rail connected to the 6-pin PEG connector and the other running the 24-pin ATX connector. The 24-pin ATX connector has two yellow cables that supply 12V, and both of these cables supply the PCI-E slots with power. The increasing power requirements of modern GPUs was the driving force behind the switch from 20-pin ATX connectors to 24-pin connectors. Some power supply manufacturers include different color markings on the 12V cables to differentiate rails, so if you have such a power supply you should make sure you connect components to a rail that has sufficient remaining juice.

It's important to have one 12V rail supply the CPU with power and the second rail for the PCI-E slots and 6-pin connector. Unfortunately, many companies make a tremendous mistake when it comes to power distribution. We have seen several power supplies that use one 12V rail for the 6-pin PEG connector and then a second 12V rail for the CPU and 24-pin ATX connector. That means if you have a graphics card that doesn't include a 6-pin jack, both the CPU and GPU will use the same 12V rail for power. In this case, the second 12V rail goes completely unused, and users risk drawing too much current on the remaining 12V rail. In addition, how much power a GPU draws from the 6-pin connector and how much it takes from the PEG slot varies.

Checking the labels of the entry-level units, we see that our selected power supplies should all have no difficulty running any of the above GPUs. Power supplies like the Corsair VX450W that has a single 12V rail have the advantage of being able to fully utilize the rated 33A.

PSUs for High-End Systems Connectors and the 12V Rail Issue, Cont'd
Comments Locked

98 Comments

View All Comments

  • BernardP - Monday, September 22, 2008 - link

    The following paragraph from the article has me puzzled:

    "It's important to have one 12V rail supply the CPU with power and the second rail for the PCI-E slots and 6-pin connector. Unfortunately, many companies make a tremendous mistake when it comes to power distribution. We have seen several power supplies that use one 12V rail for the 6-pin PEG connector and then a second 12V rail for the CPU and 24-pin ATX connector. That means if you have a graphics card that doesn't include a 6-pin jack, both the CPU and GPU will use the same 12V rail for power. In this case, the second 12V rail goes completely unused, and users risk drawing too much current on the remaining 12V rail."

    I have an Antec Eartwatts 380. How can I find out if Antec has made the tremendous mistake or not? I want to make sure that the 6-pin connector and PCI-E slot are on their own 12V rail. Antec litterature on this PS says:

    "Dual 12V outputs: 12V2 for motherboard and peripherals, 12V1 for processor"

    It would seem OK, assuming "peripherals" includes the 6-pin connector.
  • 7Enigma - Monday, September 22, 2008 - link

    What is your graphics card? From the article it seems to me they are saying if you do NOT have a card that requires a 6-pin PEG connector then you could possibly have an issue. If you have a card requiring a PEG connector you don't have to worry.
  • BernardP - Monday, September 22, 2008 - link

    Exactly. I am planning to add a 9500GT to my existing system (integrated graphics). No power connector on that card.
  • Dribble - Monday, September 22, 2008 - link

    http://extreme.outervision.com/powercalc.jsp">http://extreme.outervision.com/powercalc.jsp

    Seems to return sensible values, and not only does it cover pretty well every component you might come across, but it also understands overclocking, over volting, and allows you to enter a value for capacitor ageing.

    Also, here is a thread which someone has helpfully listed real power requirements (as given in reviews) for pretty well all graphic cards on the market right now:
    http://archive.atomicmpc.com.au/forums.asp?s=2&...">http://archive.atomicmpc.com.au/forums.asp?s=2&...
  • drank12quartsstrohsbeer - Monday, September 22, 2008 - link

    Hey Guys: Remember that decibels is a logrithmic scale of measurement! Using a linear scale on the graph leads to inappropriate conclusions being drawn from the data.
  • 7Enigma - Monday, September 22, 2008 - link

    I don't think it does. Maybe a quick *note* at the beginning of the acoustics section mentioning its logrithmic, but it is very easy to read a linear scale.

    Also, the majority of the tested systems fall well below the floor of most systems (20 decibels), so it is a moot point anyway.
  • gmkmay - Monday, September 22, 2008 - link

    I'll start off by saying good article, however I would have liked to see a few additions.

    Other than the aforementioned new cards and overclocking information I think it would have been helpful to include common watercooling pumps and case/system fans. There is most likely a large enough set reading this that would have liked to see those added.

    The problem with the power supply issue is you have to be really careful not to get something too weak...and its really easy to forget a few small items that can quickly add up (for instance 2 pumps, 8 120mm fans, etc).
  • mindless1 - Thursday, September 25, 2008 - link

    Nobody building a PC needs 8 x 120mm fans. Let's suppose you throttle down the fans enough that you might actually have good use for so many to have them all at very low RPM. That would tend to cause under 150mA per fan or barely over 1A total, a relatively trivial amount of power considering that even spinning up any one hard drive causes a larger momentary spike.

    A couple pumps shouldn't use all that much power either, but if you're pouring enough money into the system to have it that elaborate then why would you be on the fence about choosing a marginally capable PSU versus one with plenty of reserve power to the point where 3A one way or the other isn't a factor?
  • Anubis - Monday, September 22, 2008 - link

    would be interesting to see numbers on just how much power OCing pulls over a non OCed system
  • Christoph Katzer - Monday, September 22, 2008 - link

    I had a QX9770 just slightly overclocked with basic bios functions (for an oc-noob like me) and already then it had an increased power draw of 20% at full load compared to normal.

Log in

Don't have an account? Sign up now