Connectors and the 12V Rail Issue

Okay, we've chosen a few power supplies for our three test systems, but so far we've only looked at performance. There are still two additional issues that can affect your choice of power supply. We have previously shown that it is possible to run even high-end systems with a much lower rated power supply than you might expect. However, look at the offerings from the various manufacturers and you will frequently find that there are insufficient connectors for some configurations. The second issue involves the 12V rail(s), which is primarily responsible for powering the processor and graphics card(s).

Let's start with the first issue: having enough connectors. It is certainly possible to run a GeForce 8800 Ultra using only a 400W power supply; however, no one makes a 400W PSU with the necessary two PEG connectors. In fact, some power supplies in this range might not even have a single PEG connection. You could always use a Molex to PEG adapter(s), but you're probably better off selecting a different power supply.

Our entry-level system used the ATI Radeon HD 3650, which is a nice choice because it doesn't require any PEG connector. In the future users might want to upgrade graphics cards, however. The good news is that all of the entry-level PSUs be selected include a single 6-pin PEG connector, so they should be sufficient for powering up to a midrange (8800 GT/HD 3850) graphics card. If all you need is an average computer system, these power supplies will work fine.

The second issue is the amount of power the unit needs to provide in order to port graphics cards that use a single 6-pin jack. We could have included more cards, but for this example we've selected ATI's HD 3850/70 and NVIDIA's GeForce 8800 GTS and 9600 GT. We've created a table showing how much power these cards consume and where this power comes from under full load.

GPU Power Requirements by Connector
Vendor and Chip Through 6-pin Jack
Through PCI-E Slot
Total Power
ATI Radeon HD 3850 4.4A 52.8W 2.4A 28.8W 82W
ATI Radeon HD 3870 5.1A 61.2W 2.6A 31.2W 92W
NVIDIA GeForce 8800 GTS
7.2A 86.4W 4.8A 57.6W 144W
NVIDIA GeForce 9600 GT 4.9A 58.8W 4.0A 48.0W 107W

We need to check if the power supplies come with either one or two 12V rails. PSUs with two 12V rails usually have one rail connected to the 6-pin PEG connector and the other running the 24-pin ATX connector. The 24-pin ATX connector has two yellow cables that supply 12V, and both of these cables supply the PCI-E slots with power. The increasing power requirements of modern GPUs was the driving force behind the switch from 20-pin ATX connectors to 24-pin connectors. Some power supply manufacturers include different color markings on the 12V cables to differentiate rails, so if you have such a power supply you should make sure you connect components to a rail that has sufficient remaining juice.

It's important to have one 12V rail supply the CPU with power and the second rail for the PCI-E slots and 6-pin connector. Unfortunately, many companies make a tremendous mistake when it comes to power distribution. We have seen several power supplies that use one 12V rail for the 6-pin PEG connector and then a second 12V rail for the CPU and 24-pin ATX connector. That means if you have a graphics card that doesn't include a 6-pin jack, both the CPU and GPU will use the same 12V rail for power. In this case, the second 12V rail goes completely unused, and users risk drawing too much current on the remaining 12V rail. In addition, how much power a GPU draws from the 6-pin connector and how much it takes from the PEG slot varies.

Checking the labels of the entry-level units, we see that our selected power supplies should all have no difficulty running any of the above GPUs. Power supplies like the Corsair VX450W that has a single 12V rail have the advantage of being able to fully utilize the rated 33A.

PSUs for High-End Systems Connectors and the 12V Rail Issue, Cont'd
Comments Locked

98 Comments

View All Comments

  • JarredWalton - Monday, September 22, 2008 - link

    Edit: Christoph's text reflect the range for 90VAC to 230VAC, but my editing made that a little less clear. I've added in "input voltage" comments to clarify things.
  • poohbear - Monday, September 22, 2008 - link

    thanks for this article!!! im planning on running 2 8800gt's in SLI on a 80% efficient enermax 420wt psu. it has 29a on the 12v+ line so im confident it can run it. All this BS about needing 500+wts psus is nonsense if you know your cards power needs.
  • bela - Monday, September 22, 2008 - link

    Where did you get those power figures? Dream last night or what?

    This is totally made up bullshit.

    The ANTI-AMD war continues @ Anandtech

    you compare 2 year old 90nm AMD DC with new 45nm Intel DC, is that a fair peer group?

    6000+ 160W load? Even with 90nm this ist ridicoulus, it should be around 110W, a new 65nm 6000+ needs less then 80 Watt, a 65nm 5000+ less then 60W, so talk about making Intel look good.
  • elaar - Monday, September 22, 2008 - link

    bela, you seem to be incredibly rude and have also missed the entire point of the article, if it makes you that annoyed then why not do us all a favour and stop reading articles and commenting in the future.

    I for one found the article incredibly useful especially when you consider the sheer number of people who go out and buy way too powerful psu's and have no idea what they're doing.

    It doesn't matter what processor or graphics cards power stats were listed, they were just there as examples for the article, god knows how you've managed to get so confused with paranoia to believe it was an anti AMD campaign.

    Thanks Anandtech for a superb article.
  • npp - Monday, September 22, 2008 - link

    The power draw figures for the X2 6000+ are a bit off-scale (and yes, it is an older 90nm die, apparently), it's a tiny bit, however. You can have a look at the charts here (damn, the stupid link button doesn't work):

    http://xbitlabs.com/articles/cpu/display/dualcore-...">http://xbitlabs.com/articles/cpu/display/dualcore-...

    The system equiped with an X2 6000+ was measured to draw about 304W at full load and 180W at idle. Adding ~25W to that difference makes for ~150 total power consumption, which comes close to what was stated in the article. Just because you thought "it should be around 110W" doesn't make you automaticaly right. Learn living with the truth and stop behaving like a small child.

    Furthermore, as it was properly stated, those figures were intended to draw a frame around the best and worst case scenarios, representing some of the CPUs typicaly found in a system today. They weren't meant as a CPU-to-CPU comparison.

    That old dark sense of anti-AMD or anti-Intel paranoia continues to be abundant in every discussion nowadays... What a triumph for the PR brainwashers at both camps.
  • bela - Friday, September 26, 2008 - link

    No, they are not of scale, they are bullshit, nothing else but made up numbers.

    Look at this:

    X2 6400+ WITH Voltage Regulator, depending on Board 85,9 or 103,3 Watt


    http://ht4u.net/reviews/2008/amd_phenom_leistungsa...">http://ht4u.net/reviews/2008/amd_phenom_leistungsa...

    This ist the truth, nothing else
  • Kiijibari - Monday, September 22, 2008 - link

    Could this be a typo ?
    106W is ok, 160W is a little bit out of the "normal" scale ..

    Furthermore .. which 6000+ is it ?

    There are 3 different models:

    one 90nm "normal" model: 125W 3,0 GHz; 2x1MB L2 (ADX6000IAA6CZ)
    one 90nm EE model: 89W 3,0 GHz; 2x1MB L2 (ADA6000IAA6CZ)
    one 65nm model: 89W 3,1 GHz; 2x512kB L2 Cache (ADV6000IAA5DO)

    cheers

    Kiiji
  • JPForums - Monday, September 22, 2008 - link

    This is a curiosity for me as well.
    I have an A64 X2 6400+ 125W, 3.2GHz, 2x1MB L2 (don't remember the model number off hand) that doesn't seem to require near that power.

    The 6400+ is running on an nForce 570SLI with 8Gb (4x2Gb) DDR2-800.
    The video card is an 8800GTS 512Mb.
    I have 4 HDDs 2 optical drives and 8 fans (7 case + CPU fan) that according to specifications run at 8.6W when at full speed (how I have them while gaming).
    If I use the (presumably lower) power ratings used for the 6000+ and the 8800GT, and I exclude the power of usb components and the fan controller/sensor overhead, my total system consumption at load (using the values from the article) is around 450W.

    The curiosity is that the same Enermax Pro82+ 385W PSU mentioned in the article has no issue running this system. (Ironically emphasizing the point of the article) Using a basic kill-a-watt meter, I found a power draw of 378.2 was as high as it got during benchmarking, gaming, stressing the system. For reference, I tried 3DMarks 2006/Vantage, Stalker, Crysis, C&C3, and a combination of 2xPrime95 + ATItool's GPU heat up mode (rotating fuzzy block). The ATI tool combo offered the largest power draw in my system. Granted, the kill-a-watt may not be as accurate and I may not have stressed the system as well as in the article, but I suspect the power draw numbers for the 6000+ are lower than the article suggests.

    That small inconsistency aside, this was a nice article. I would like to see those power draw blocks that you overlayed on the power efficiency and noise curves included in future PSU reviews. It would be a quick and easy way to let people know how applicable the PSU being reviewed is to them. It would also be interesting to see how high the power draw gets with water cooling systems, case mods (I.E. cold cathodes), and the likes.
  • Christoph Katzer - Monday, September 22, 2008 - link

    My 6000+ was 90nm, yours?
  • Kiijibari - Monday, September 22, 2008 - link

    He has a 6400+, that CPU is 90nm only (so far).

    But he has a AM2 mainboard, maybe you had a AM2+ board, and the onboard VRMs are running badly with a AM2 CPU ?

    cheers

    Kiiji

Log in

Don't have an account? Sign up now