An Update on SandForce

Before we get to the topic at hand today I wanted to give a brief update on SandForce. In our last SSD article I mentioned that I'd been able to replicate the infamous SF-2281 BSOD bug. In my testing the issue never appears as a full on BSOD, instead I either see periods of very high IO latency (multiple seconds) or a hard lock requiring a reset. The problem doesn't appear with any amount of regularity in most of my testbeds, however I can get one specific test system (the ASUS P8Z68V-Pro I mentioned in the earlier article) running the right workload to exhibit this issue at least once in any 72 hour period. I don't know whether or not this issue is related to the BSOD bug that many complain about, but I do know that the behavior isn't desirable and doesn't appear to impact other comparable SSDs. At the same time, the issue doesn't appear to be present and/or as severe on all platforms. Since the last article I've deployed two more drives in separate systems, neither of which has come back with any serious issues yet.

I still believe whatever issue plagues these drives to be limited in scope, but without a way of predicting whether or not the problem will occur it's still a thorn in SandForce's side. Contrary to what you may have heard, I believe this issue impacts all SF-2xxx based drives and I've reproduced it on drives from multiple vendors.

SandForce is going to be flying down a representative to take a look at my test system to help determine the root cause of the issue.

The Crucial m4 Update

When we first reviewed Crucial's m4 SSD we came away with mixed feelings on the drive. In some cases it was the first or second fastest drive we'd reviewed, while in others it struggled to outperform last year's C300. While Crucial has been diligent in updating the m4 to fix compatibility issues, we haven't seen any of the performance increases Crucial promised at the drive's introduction.

That all changed last week as Crucial posted the latest 0009 firmware for the m4 and Micron C400. The firmware updates drives that shipped with the original 0001 firmware as well as those with the previous 0002 version. Crucial supplies a bootable ISO that you can either burn to a CD or image to a USB drive.

The firmware update process went smoothly for me. I tested on an Intel DH67BL motherboard with the SATA ports set to AHCI. I used a USB stick imaged with the ISO via UNetbootin.

Crucial's release notes indicate improved performance as a major feature of FW0009:

Release Date: 08/25/2011
Change Log:

  • Changes made in version 0002 (m4 can be updated to revision 0009 directly from either revision 0001 or 0002)
  • Improved throughput performance.
  • Increase in PCMark Vantage benchmark score, resulting in improved user experience in most operating systems.
  • Improved write latency for better performance under heavy write workloads.
  • Faster boot up times.
  • Improved compatibility with latest chipsets.
  • Compensation for SATA speed negotiation issues between some SATA-II chipsets and the SATA-III device.
  • Improvement for intermittent failures in cold boot up related to some specific host systems.

The Test

CPU

Intel Core i7 2600K running at 3.4GHz (Turbo & EIST Disabled) - for AT SB 2011, AS SSD & ATTO

Motherboard:

Intel DH67BL Motherboard

Chipset:

Intel H67

Chipset Drivers:

Intel 9.1.1.1015 + Intel RST 10.2

Memory: Corsair Vengeance DDR3-1333 2 x 2GB (7-7-7-20)
Video Card: eVGA GeForce GTX 285
Video Drivers: NVIDIA ForceWare 190.38 64-bit
Desktop Resolution: 1920 x 1200
OS: Windows 7 x64
Random & Sequential Read/Write Performance
POST A COMMENT

45 Comments

View All Comments

  • Nakecat - Wednesday, August 31, 2011 - link

    so if TRIM won't work in RAID, it's still ok to run in RAID with ssd built-in GC?

    I have 4 C300 256GB and thinking either going for RAID 0 or RAID 5.
    Reply
  • jwilliams4200 - Wednesday, August 31, 2011 - link

    It is NOT true that the Sandforce GC is notably better than the Crucial/Marvell GC.

    Anand has a terrible method of trying to measure the GC effectiveness. Running HD Tach is just an absurd way to look at how GC performs under realistic work loads. It is almost impossible to name a realistic workload that does large sequential writes OF A STREAM OF ZEROS across the entire span of the SSD. The Sandforce drives just compress the stream of zeros by a factor of about 10, and therefore need to write only about 10% as much data to flash as the Crucial/Marvell, thus making it look like the performance with Sandforce does not degrade much. But if you wrote the same workload to the SSD with incompressible data, the Sandforce GC performs similarly to the Crucial/Marvell GC.

    This problem with Anand's testing has been pointed out to him before, but he continues to print misleading information.

    Anyone who is interested in looking at sustained performance of SSDs without TRIM should look at the industry standard test protocols as defined in the SNIA documents for "Solid State Storage (SSS) Performance Test Specification (PTS)"

    http://www.snia.org/tech_activities/standards/curr...

    In particular, the is a pre-conditioning test that specifies using random data and 4KB random writes to get the drive into a steady-state condition. By measuring IOPS vs time while doing 4KB random writes, it is possible to observe the degradation in performance. Then after the drive reaches steady-state, more extensive tests are run to determine sustained performance. This is the sort of testing that Anand should be doing.
    Reply
  • MarcHFR - Thursday, September 01, 2011 - link

    I agree that using HD Tach is not a very good for such a thing on SandForce SSD.

    You can also note that HD Tach doesn't wrote so much data on the drive, even a "long" run is ratter quick.

    Using IOMETER with incompressible data i get a onther story :

    http://www.behardware.com/articles/830-13/tenue-pe...
    Reply
  • aferox - Wednesday, August 31, 2011 - link

    I've been running two C300 drives for about a year, and an m4 for about two months. Absolutely no problems in that time. Given that these drives were substantially (!) cheaper than the alternatives, and available in large capacities (total of 1TB) I've got to consider them excellent purchases. I'm definitely willing to give up a little speed for reliable and less expensive drives. Reply
  • danjw - Wednesday, August 31, 2011 - link

    Why do you let us know that the some of the others are attached to a 6Gbps port, but not some. This chart and review are not useful, unless you provide that data. This seems like a no brainier. Are you purposely handicapping the drives that aren't attached to 6Gbps ports? What is the motivation for this? Reply
  • MrSpadge - Wednesday, August 31, 2011 - link

    Considering it's called "Vertex 3 MAX IOPS 6Gbps (240GB)" it looks like a simply typo and was meant to be "Vertex 3 MAX IOPS 240GB (6Gbps)"... which is supported by the fact that the Vertex 3 pushes > 500 MB/s in the article, which would be impossible using SATA-2. The Samsung doesn't support SATA-3. Chill, mate. Reply
  • LTG - Wednesday, August 31, 2011 - link

    On OSX (Mac) how much of a performance penalty do we pay over time for not having trim?

    You mentioned this may be an issue in a previous article...
    Reply
  • LTG - Wednesday, August 31, 2011 - link

    Ugh, sorry I saw you addressed that - thanks. Reply
  • ChristophWeber - Wednesday, August 31, 2011 - link

    On my Intel X25M G2 practically none. There is a TRIM enabler tool for MacOSX floating around, ask Google. Reply
  • gramboh - Wednesday, August 31, 2011 - link

    The 256gb M4 is still $439.99 at my local retailer/etailer, and $399.99 at newegg.ca - hopefully the price comes down a bit to match what it is going for in the U.S., because it is an excellent value compared to the 510 at those prices. Reply

Log in

Don't have an account? Sign up now