HTPC Aspects : Introduction

Home Theater PC (HTPC) enthusiasts keep close tabs on launch of discrete GPUs which don't need a PCIe power connector. Such cards make it easy to upgrade an old PC with a low-wattage PSU into a multimedia powerhouse. Over the last decade or so, GPUs have implemented HTPC functionalities in response to consumer demand as well as changing / expected market trends. In the beginning, we had hardware acceleration for decode of MPEG-2. This was followed by H.264 / VC-1 acceleration (thanks to the emergence of Blu-rays), HD audio bitstreaming and 3D video support. More recently, we had support for playback and decode of videos in 4K resolution.

4K presents tangible benefits to consumers (unlike 3D), and market adoption is rapidly growing. In many respects, this is similar to how people migrated to 720p and 1080i TV sets when vendors started promoting high definition (HD). We know that these early adopters were stuck with expensive CRT-based TVs when the LCD-based 1080p sets came to the market at very reasonable prices. While there is no 'CRT-to-LCD'-like sea-change in the horizon, the imminent launch of HDMI '2.0' (The HDMI consortium wants to do away with version numbers for reasons known only to them) with 4Kp60 capability and display sinks fully compliant with that standard needs to be kept in mind by end users.

In the near future, it is expected that most of the 4K material reaching consumers will be encoded in H.264. Consumer devices such as the GoPro cameras still record 4K in that codec only. From a HTPC GPU perspective, it is imperative that we have support for 4K H.264 decoding. In fact, most real-time encoding activities would utilize H.264, but, a good HEVC (H.265) encoder would definitely be more efficient in terms of bitrate. The problem is that it is very difficult to make a good HEVC encoder operate in real-time. Archiving content wouldn't be a problem, though. So, it can be expected that content from streaming services / local backup (where the encoding is done offline) will move to HEVC first. A future-proof HTPC GPU would be capable of HEVC decode too.

Where does the Maxwell-based 750Ti stand when the above factors are taken into account? Make no mistake, the NVIDIA GT 640 happens to be our favourite HTPC GPU when 4K-capability is considered an absolute necessity. On paper, the 750Ti appears to be a great candidate to take over the reins from the GT 640. In order to evaluate the HTPC credentials, we put the 750Ti to test against the Zotac GT 640 as well as the Sapphire Radeon HD 7750.

In our HTPC coverage, we first look at GPU support for network streaming services, followed by hardware decoder performance for local file playback. This section also covers madVR. In the third section, we take a look some of the miscellaneous HTPC aspects such as refresh rate accuracy and hardware encoder performance.

The HTPC credentials of the cards were evaluated using the following testbed configuration:

NVIDIA GT 750Ti HTPC Testbed Setup
Processor / GPU Intel Core i7-3770K - 3.50 GHz (Turbo to 3.9 GHz)
NVIDIA GT 750Ti / Zotac GT 640 / Sapphire Radeon HD 7750
Motherboard Asus P8H77-M Pro uATX
OS Drive Seagate Barracuda XT 2 TB
Secondary Drive OCZ Vertex 2 60 GB SSD + Corsair P3 128 GB SSD
Memory G.SKILL ECO Series 4GB (2 x 2GB) SDRAM DDR3 1333 (PC3 10666) F3-10666CL7D-4GBECO CAS 9-9-9-24
Case Antec VERIS Fusion Remote Max
Power Supply Antec TruePower New TP-550 550W
Operating System Windows 8.1 Pro
Display / AVR
Sony KDL46EX720 + Pioneer Elite VSX-32
Acer H243H
Graphics Drivers GeForce v334.69 / Catalyst 14.1 Beta
Softwares CyberLink PowerDVD 13
MPC-HC 1.7.3
madVR 0.87.4

All the three cards were evaluated using the same hardware and software configuration. The Sapphire Radeon HD 7750 has an advantage in the power consumption department thanks to its passive cooling system. Other than that, we are doing apples-to-apples comparison when talking about power consumption numbers for various activities in the next few sections.

Meet The Reference GTX 750 Ti & Zotac GTX 750 Series HTPC Aspects : Network Streaming Performance
Comments Locked

177 Comments

View All Comments

  • texasti89 - Tuesday, February 18, 2014 - link

    http://media.bestofmicro.com/4/R/422667/original/F...
  • texasti89 - Tuesday, February 18, 2014 - link

    Also I was referring to the 750ti (60w) not the 750 (55w) in my comment. Words in the article reflect reviewers opinions. Benchmark results from various tech websites give same conclusion.
  • texasti89 - Tuesday, February 18, 2014 - link

    Another one to look at : http://www.techpowerup.com/reviews/NVIDIA/GeForce_...
  • tspacie - Tuesday, February 18, 2014 - link

    [Coming soon to a flu near you]

    This is a caching error or similar on page 4, right?
  • mindbomb - Tuesday, February 18, 2014 - link

    Hello Ryan and Ganesh. I'd like to point out for your video tests that there is no luma upscaling or image doubling for a 1080p video on a 1080p display, since luma is already scaled. You need to test those with a 720p video, and they are mutually exclusive, since image doubling will convert 1280x720 to 2560x1440, where you will need to downscale rather than upscale.
  • ganeshts - Tuesday, February 18, 2014 - link

    Luma upscaling is present for 480i / 576i / 720p videos and downscaling for the 4Kp30 video. We have nine different sample streams.
  • jwcalla - Tuesday, February 18, 2014 - link

    I'd like to see AT adopt some OpenGL benchmarks in the future.

    Us OpenGL consumers are out here. :)
  • Ryan Smith - Thursday, February 20, 2014 - link

    So would I. But at the moment there aren't any meaningful games using OpenGL that are suitable for benchmarking. After Wolfenstein went out of date and Rage was capped at 60fps, we ended up stuck in that respect.
  • Roland00Address - Tuesday, February 18, 2014 - link

    Feel better Ryan, don't let the flu get you down! (Or is it Ganesh T S?)

    Looks like Nvidia has a 8800gt/9800gt on its hands (for different reasons than the original 8800gt)
  • Hrel - Tuesday, February 18, 2014 - link

    Seriously impressive performance/watt figures in here. Makes me wonder when we're going to see this applied to their higher end GPU's.

    Looking at TSMC's site they are already producing at 20nm in 2 fabs. Starting in May of this year they'll have a 3rd up. Do you think it's likely May/June is when we'll see Maxwell make it's way into higher end GPU's accompanied by a shift to 20nm?

    That approach would make sense to me, they'd have new product out in time for Summer Sales and have enough time to ramp production and satiate early adopters before back to school specials start up.

    On a personal note: I'm still running a GTX460 and the GTX750ti seems to be faster in almost every scenario at lower power draw in a smaller package. So that's pretty cool. But since TSMC is already producing 20nm chips I'm going to wait until this architecture can be applied at a smaller manufacturing process. That GPU is in a media PC, so gaming is a tertiary concern anyway.

Log in

Don't have an account? Sign up now