AnandTech Storage Bench 2011

Back in 2011 (which seems like so long ago now!), we introduced our AnandTech Storage Bench, a suite of benchmarks that took traces of real OS/application usage and played them back in a repeatable manner. The MOASB, officially called AnandTech Storage Bench 2011 - Heavy Workload, mainly focuses on peak IO performance and basic garbage collection routines. There is a lot of downloading and application installing that happens during the course of this test. Our thinking was that it's during application installs, file copies, downloading and multitasking with all of this that you can really notice performance differences between drives. The full description of the Heavy test can be found here, while the Light workload details are here.

Heavy Workload 2011 - Average Data Rate

The same goes for our 2011 Storage Bench: the XP941 is unbeatable. Only in the Light Workload test, the 8-controller OCZ behemoth is able to beat the XP941 by a small margin, but other than that there's nothing that can challenge the XP941. The consumer-oriented OCZ RevoDrive comes close but the XP941 once again shows how a good single controller design can beat any RAID 0 configuration.

Light Workload 2011 - Average Data Rate

AnandTech Storage Bench 2013 Random & Sequential Performance
POST A COMMENT

110 Comments

View All Comments

  • bharatwd - Thursday, May 15, 2014 - link

    Hope something with these speeds comes in sata express.........however im gonna pick one of these as soon as it becomes available....im planning to buy z97 anyways :) Reply
  • mikeangs2004 - Thursday, May 15, 2014 - link

    sata is being replaced by m.2. You're outdated Reply
  • Galatian - Thursday, May 15, 2014 - link

    No, you are...he is talking about SATA Express...M.2 is essentially the small form factor connector of SATA Express. Reply
  • Babar Javied - Thursday, May 15, 2014 - link

    So use SATA Express when the M.2 is just as good? Also, you don't have to worry about the ugly SATA Express.

    I am still a little unclear on how SATA express works exactly but from what I understand is that SATA Express requires two PCIe lanes and only operates at x2 speeds whereas this can use the x4 lane. Plus, the M.2 form factor is much smaller than 2.5" used by SATA SSDs. Not that there isn't enough room in a desktop/laptop for a 2.5" drive but if there is no difference in performance why not get the physically small drive?

    Again, i could be wrong about the lane speeds so please correct me if I am.
    thanks
    Reply
  • basroil - Thursday, May 15, 2014 - link

    M.2 is a form factor and connector specification, it supports SATA Express, like in this case Reply
  • SirKnobsworth - Thursday, May 15, 2014 - link

    Not quite - SATA express defines an interface for PCIe x2 and 2 SATA ports to share the same pins one one connector. This particular flavor of M.2 just happens to implement PCIe x2 and SATA, but on separate pins. Reply
  • basroil - Friday, May 16, 2014 - link

    Meant to say SATA Express supports M.2 rather than the other way around. And it's not just PCIe x2, the M.2 format currently supports up to x4, but the intel chipset and SATA 3.2 don't support above x2 just yet. In M.2, SATA is B and M keys, while PCIe is A B E and M (x4 ) keys, so SATA and PCIe do share some pins (but like you said, not in all cases) Reply
  • Galatian - Friday, May 16, 2014 - link

    I don't really think it has anything to do with the Intel chipset. The mainboard manufactures are free to allocate the FlexIO how they like. They can use up to 8 x PCIe lanes, but of course have to reduce the SATA and/or USB ports then. Also the PCIe lanes are used for other things as well like the Intel Gigabit Ethernet port I think.

    Still I think for a top of the line mainboard it makes more sense to go for the x4 implementation and have a few SATA ports less.
    Reply
  • basroil - Friday, May 16, 2014 - link

    "I don't really think it has anything to do with the Intel chipset."
    The chipset does currently support only 2 lanes since the 3.2 specification is meant for 2 lanes, and Intel RST only supports 2 lanes. ASRock bypassed the chipset in it's 4 lane implementation, so it has nothing to do with flex IO (which is the chipset allowing more USB3.0 or SATA, or other things).
    Reply
  • SirKnobsworth - Friday, May 16, 2014 - link

    Right - x4 from the chipset would probably work just fine but you couldn't use it as a cache. Reply

Log in

Don't have an account? Sign up now