One of the most important kits in this review is the DDR3-1600 kit for which G.Skill has supplied one of their RipjawsX range.  This kit is of importance due to the close price differential to the DDR3-1333 kit ($5 difference), but also as generations of processors go forward we get an ever increasing suggested memory speed of those processors.  Take the most recent AMD Trinity processor release for desktops – all but the low end processor supports 1866 MHz memory as the standard out of the box.  Now we can be assured that almost all of the processors will do 2133 MHz, but as manufacturers raise that ‘minimum’ compliance barrier in their testing on their IMCs, the ‘standard’ memory kit has to be faster and come down in price also.

Visual Inspection

The RipjawsX kit we have uses a large heatsink design, with the top of the heatsink protruding 9.5mm above the module itself.  As mentioned with the Ares DDR3-1333 kit, there are multiple reasons for why heatsinks are used, and pretty low on that list is for cooling.  More likely these are placed initially for protecting which ICs are used in the kit from the competition (using a screwdriver and a heatgun to remove them usually breaks an IC on board), then also for aesthetics. 

The heatsink for RipjawsX uses a series of straight lines as part of the look, which may or may not be beneficial when putting them into a system with a large air cooler.  Here I put one module into a miniITX board, the Gigabyte H77N-WiFi, with a stupidly large and heavy air cooler, the TRUE Copper:

As we can see, the cooler would be great with the Ares kit, but not so much with the RipjawsX.  The kit will still work in the memory slot like this, though for piece of mind I would prefer it to be vertical.  As we will see with the TridentX (the 2400 MHz kit), sometimes having a removable top end heatsink helps.

JEDEC + XMP Settings

G.Skill
Kit Speed 1333 1600 1866 2133 2400
Subtimings 9-9-9-24 2T 9-9-9-24 2T 9-10-9-28 2T 9-11-10-28 2T 10-12-12-31 2T
Price $75 $80 $95 $130 $145
XMP No Yes Yes Yes Yes
Size 4 x 4 GB 4 x 4 GB 4 x 4 GB 4 x 4 GB 4 x 4 GB

MHz 1333 1600 1867 2134 2401
Voltage 1.500 1.500 1.500 1.650 1.650
tCL 9 9 9 9 10
tRCD 9 9 10 11 12
tRP 9 9 9 10 12
tRAS 24 24 28 28 31
tRC 33 33 37 38 43
tWR 10 12 14 16 16
tRRD 4 5 5 6 7/6
tRFC 107 128 150 171 313
tWTR 5 6 8/7 9/8 10/9
tRTP 5 6 8/7 9/8 10/9
tFAW 20 24 24 25 26
tCWL - 7 7 7 7
CR - 2 2 2 2

 

F3-1333C9Q-16GAO: 4 x 4 GB G.Skill Ares Kit F3-14900CL9Q-16GBSR: 4 x 4 GB G.Skill Sniper Kit
Comments Locked

114 Comments

View All Comments

  • vegemeister - Friday, October 19, 2012 - link

    Most of the (still tiny) difference that appeared in the x264 benchmark was in the first pass. Two pass encodes really only make sense when you're trying to fit a single video onto a single storage device. That's an extremely uncommon use case these days, for everyone but the people mastering blu-rays.
  • jonyah - Thursday, October 18, 2012 - link

    "I remember buying my first memory kit ever. It was a 4GB kit of OCZ DDR2 for my brand new E6400 system, and at the time I paid ~$240, sometime back in 2005."

    I remember buying my first kit too. It was an upgrade from the 2MB I had to 6MB (yes MB, not GB), and that 6MB cost me $200 as well, this was back in 1995. Ten years and we had a 1000x improvement in size and who knows how much in speed.
  • rchris - Thursday, October 18, 2012 - link

    Well, dang it! All these "I remember..." comments have really made me feel old. In my case it was paying $300 for a used 1MB board for a Zenith Z100. Can't even remember the year--somewhere in the mid- to late-1980s.
  • IanCutress - Thursday, October 18, 2012 - link

    I should point out that the kit I got was my first purchased kit on its own... Many computers before then where they were built my family or came pre-built.

    On the topic of A10 comparisons, I had thought of doing some in the future if enough interest was there. As the majority of CPU sales is in Intel's favor, we went with Intel first. (Also most of the testing for this review occurred before I had an A10 sample at hand.)

    Ian
  • Termie - Thursday, October 18, 2012 - link

    Great article, Ian. Thanks for taking on this challenge and enlightening us all.

    Don't worry about all the old-timers bugging you about your first build being in this century. It's not like they could have written this article!
  • arthur449 - Thursday, October 18, 2012 - link

    I'd love to see an AMD CPU test run with the same memory kits and the same test suite to contrast the differences in performance gains offered by faster memory between the two major CPU platforms.
  • lowenz - Thursday, October 18, 2012 - link

    Make an extension to this brilliant article with new Trinity A8 / A10 and you'll be an instant geek hero.
  • frozentundra123456 - Thursday, October 18, 2012 - link

    Could you do a similar test in laptops, A10 vs HD4000? Like I said in my other post, this is where I see more possibility of igps actually being used for gaming. I also think this is where HD4000 is most competitive to AMD, in a power limited scenario.
  • DanNeely - Thursday, October 18, 2012 - link

    Have laptop bios's opened up enough in the last few years to let you specify memory timings? The advice I've always seen was to buy the cheapest ram at your laptops designated clockspeed because you won't be able to set the faster timings even if you wanted.
  • haplo602 - Friday, October 19, 2012 - link

    You have ONE set for each frequency, WHY the hell are you using the stupid model numbers in the graphs ????

    WHO CAME UP WITH THAT STUPID IDEA ????

    otherwise the review is solid.

Log in

Don't have an account? Sign up now